Activation of Nod1 Signaling Induces Fetal Growth Restriction and Death through Fetal and Maternal Vasculopathy.

نویسندگان

  • Hirosuke Inoue
  • Hisanori Nishio
  • Hidetoshi Takada
  • Yasunari Sakai
  • Etsuro Nanishi
  • Masayuki Ochiai
  • Mitsuho Onimaru
  • Si Jing Chen
  • Toshiro Matsui
  • Toshiro Hara
چکیده

Intrauterine fetal growth restriction (IUGR) and death (IUFD) are both serious problems in the perinatal medicine. Fetal vasculopathy is currently considered to account for a pathogenic mechanism of IUGR and IUFD. We previously demonstrated that an innate immune receptor, the nucleotide-binding oligomerization domain-1 (Nod1), contributed to the development of vascular inflammations in mice at postnatal stages. However, little is known about the deleterious effects of activated Nod1 signaling on embryonic growth and development. We report that administration of FK565, one of the Nod1 ligands, to pregnant C57BL/6 mice induced IUGR and IUFD. Mass spectrometry analysis revealed that maternally injected FK565 was distributed to the fetal tissues across placenta. In addition, maternal injection of FK565 induced robust increases in the amounts of CCL2, IL-6, and TNF proteins as well as NO in maternal, placental and fetal tissues. Nod1 was highly expressed in fetal vascular tissues, where significantly higher levels of CCL2 and IL-6 mRNAs were induced with maternal injection of FK565 than those in other tissues. Using Nod1-knockout mice, we verified that both maternal and fetal tissues were involved in the development of IUGR and IUFD. Furthermore, FK565 induced upregulation of genes associated with immune response, inflammation, and apoptosis in fetal vascular tissues. Our data thus provided new evidence for the pathogenic role of Nod1 in the development of IUGR and IUFD at the maternal-fetal interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of COVID-19 during pregnancy on fetal brain development

The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...

متن کامل

Comparison of Maternal Serum and Umbilical Cord Blood Leptin Level in IUGR Neonates

Background: Gestational weight gain is an impressive factor in the fetal outcome. Intrauterine growth restriction (IUGR) is one of the most important problems during fetal period that may lead to many perinatal and long-term complications and growing neonatal morbidities and mortalities. The aim of the study was to ascertain the relationship between umbilical cord blood leptin concentration and...

متن کامل

Nod1 activation by bacterial iE-DAP induces maternal-fetal inflammation and preterm labor.

There is a strong association between infection and prematurity; however, the underlying mechanisms remain largely unknown. Nod1 and Nod2 are intracellular pattern recognition receptors that are activated by bacterial peptides and mediate innate immunity. We previously demonstrated that human first-trimester trophoblasts express Nod1 and Nod2, which trigger inflammation upon stimulation. This s...

متن کامل

Fetal thrombotic vasculopathy: A case report and literature review.

Introduction: Fetal thrombotic vasculopathy is a recently described placental alteration with varying degrees of involvement and often associated with adverse perinatal outcomes. The diagnosis is made histologically and therefore is postnatal, which makes it a challenge in clinical practice. Method: Case report and review of literature on the subject. Results: The present case refers to a p...

متن کامل

Folic Acid Protects against Lipopolysaccharide-Induced Preterm Delivery and Intrauterine Growth Restriction through Its Anti-Inflammatory Effect in Mice

Increasing evidence demonstrates that maternal folic acid (FA) supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR) remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS) exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 196 6  شماره 

صفحات  -

تاریخ انتشار 2016